Alamat Redaksi:
Jurusan Matematika, FTIS - UNPAR
Gedung 9, Lantai 1
Jl. Ciumbuleuit No. 94, Bandung - 40141
STUDI PERBEDAAN HASIL BELAJAR MATEMATIKA SISWA YANG MENGGUNAKAN STRATEGI BELAJAR PQ4R (PREVIEW, QUESTION, READ, REFLECT, RECITE, REVIEW) DENGAN YANG MENGGUNAKAN STRATEGI PEMBELAJARAN EKSPOSITORI DI SMAN 9 KOTA JAMBI
Tika Febrianti - Universitas Batanghari, Jambi

STATISTIKA

PENGUJIAN KESTABILAN PARAMETER PADA MODEL REGRESI
Teti Sofia Yanti - Universitas Islam Bandung

MALPE DAN MAPE PROYEKSI PENDUDUK INDONESIA TAHUN 2005 DARI METODE KOMPONEN DAN METODE CAMPURAN
Yayat Karyana - Universitas Islam Bandung

REGRESI SPASIAL PADA PENENTUAN TINGKAT-FAKTOR KEMISKINAN DI JAWA TIMUR
Restu Arisanti, Aji Hamim Wigena dan Anik Djuraidah – Institut Pertanian Bogor

MODEL REGRESI KERNEL BAYESIAN (BAYESIAN ADDITIVE REGRESSION KERNELS) UNTUK PEMBENTUKAN KURVA YIELD OBLIGASI NEGARA TIPE FIXED RATE
Widyanti Rahayu dan Febriandi Rahmatulloh - Universitas Negeri Jakarta

BAYESIAN INFORMATION CRITERION (BIC) DALAM PEMILIHAN MODEL TERBAIK FEED FORWARD NEURAL NETWORK (FFNN) UNTUK DATA TIME SERIES
Mohammad Farhan Qudratullah - UIN Sunan Kalijaga, Yogyakarta

PENGgunaan GEOGRAPHICALLY WEIGHTED REGRESSION (GWR) DENGAN PEMBOBOT GAUSS KERNEL UNTUK KLASIFIKASI DESA MISKIN (Studi kasus desa-desa di Kabupaten Jember, Jawa Timur)
Rita Rahmawati, Anik Djuraidah dan M. Nur Aidi – Institut Pertanian Bogor

GENERAL COMPOSITE HAZARD RATE MODEL
Rianan dan Betty Subartini - Universitas Padjadjaran

MENENTUKAN INDEKS KOMPOSIT MENGGUNAKAN METODE LAGRANGE UNTUK MENGUKUR TINGKAT INDUSTRIALISASI DI JAWA BARAT
Eti Kurniati dan Icich Sukarsih - Universitas Islam Bandung
REGRESI SPASIAL PADA PENENTUANFAKTOR-FAKTOR
KEMISKINAN DI JAWA TIMUR

Restu Arisanti\(^1\), Aji Hamim Wigena\(^2\), Anik Djuraidah\(^2\)

\(^1\)Mahasiswa Pascasarjana, Jurusan Statistika Institut Pertanian Bogor
e-mail: restuarisanti@yahoo.com
\(^2\)Jurusan Statistika Institut Pertanian Bogor
e-mail: ajihamim@yahoo.com dan anikdjuraidah@gmail.com

Abstrak. Kemiskinan adalah keadaan dimana terjadi kekurangan hal-hal yang biasa untuk dipunyai seperti makanan, pakaian, tempat berlindung dan air minum, hal-hal ini berhubungan erat dengan kualitas hidup dan penentuan faktor-faktor yang mempengaruhi kemiskinan sangat erat kaitannya dengan kualitas hidup di suatu daerah. Penelitian ini bertujuan untuk menentukan faktor-faktor yang berpengaruh terhadap kemiskinan dengan menggunakan pendekatan model regresi spasial. Model regresi spasial yang digunakan adalah General Spatial Model (GSM), Spatial Autoregressive Model (SAR), dan Spatial Error Model (SEM). Hasil penelitian menunjukkan Spatial Autoregressive Model (SAR) atau model spasial lag lebih baik dibanding dua model lainnya dan faktor-faktor yang mempengaruhi kemiskinan adalah persentase penduduk yang memperoleh jaminan pemeliharaan kesehatan yang ditandai dengan memiliki kartu kepesertaan jaminan pemeliharaan kesehatan masyarakat miskin dan persentase penduduk yang mendapat surat miskin yang merupakan kelompok rumah tangga di bawah 20 persen kelompok pengeluaran terbawah mempengaruhi persentase penduduk miskin.

Kata kunci: Ordinary Least Square (OLS), regresi spasial, Contiguity

1. Pendahuluan

Pembangunan nasional di Indonesia masih terus dihantui dengan persoalan klasik mengenai kemiskinan yang merupakan fenomena multidimensi dimana alternatif kebijakan penanggulangannya memerlukan suatu kajian yang komprehensif dengan pemahaman yang spesifik di setiap daerah. Perlunya kajian kemiskinan dan faktor-faktor yang mempengaruhinya dengan aspek spasial dikarenakan satu wilayah dengan wilayah lainnya mempunyai perbedaan karakteristik yang erat kaitannya dengan kualitas hidup di suatu wilayah. Perbedaan karakteristik satu daerah dengan daerah lainnya perlu dipertimbangkan dalam pembuatan suatu pemodelan. Diharapkan penggunaan model regresi spasial ini mampu menentukan faktor-faktor yang berpengaruh terhadap kemiskinan di setiap daerah sehingga dapat dijadikan salah satu rujukan dalam program pengentasan kemiskinan yang tepat sasaran.

2. Metodologi: Regresi Spasial

Model regresi global biasanya didefinisikan untuk model regresi linier dengan metode prediksi parameter Ordinary Least Square (OLS). Model persamaan tersebut dapat didekspresikan dalam persamaan berikut:

\[
y = X\beta + \varepsilon
\]

\[
\varepsilon \sim N(0, \sigma^2_n)
\]

ST - 18
dimana \(y \) adalah vektor pengamatan terhadap variabel respon, \(X \) adalah matriks variabel bebas, \(\beta \) adalah vektor koefisien dan \(\epsilon \) adalah vektor galat acak.

Model regresi yang mempertimbangkan aspek spasial baik pada variabel respon maupun galat random disebut *General Spatial Model (GSM)* dapat dituliskan sebagai berikut:

\[
\begin{align*}
 y &= \rho Wy + X\beta + u \\
 u &= \lambda Wu + \epsilon \\
 \epsilon &\sim N(0, \sigma^2 I_n)
\end{align*}
\]

(2)

\(y \) adalah variabel respon berukuran \(n \times 1 \), \(X \) adalah matriks yang berisi \(p \times 1 \) variabel bebas berukuran \(n \times n \), \(\beta \) adalah vektor koefisien parameter regresi yang berukuran \(p \times 1 \), \(\rho \) adalah koefisien autoregressive spasial lag, \(\lambda \) adalah koefisien autoregressive spasial galat yang bernilai \(|\lambda| < 1 \), \(u \) adalah vektor galat yang diasumsikan mengandung autokorelasi yang berukuran \(n \times 1 \), \(W \) adalah matriks bobot spasial yang berukuran \(n \times n \), \(\sigma \) adalah banyak pengamatan dan \(p \) adalah banyak parameter regresi.

Jika \(\rho \neq 0 \), \(\lambda = 0 \) pada persamaan (2) maka persamaannya menjadi sebagai berikut:

\[
\begin{align*}
 y &= \rho Wy + X\beta + u \\
 \epsilon &\sim N(0, \sigma^2 I_n)
\end{align*}
\]

(3)

disebut model regresi spasial lag (*Spatial Lag Model*) atau sering juga disebut dengan *Spatial Autoregressive Model/SAR* (Le Sage, 1999). Untuk menguji signifikansi dari koefisien spasial lag \((p) \) digunakan Likelihood Ratio Test (LRT). Fungsi log-likelihood spasial lag adalah:

\[
l(\sigma^2, \rho, \beta; y) = c(y) - \frac{n}{2} \ln \sigma^2 + \ln |I - \rho W| - \frac{1}{2\sigma^2} \left[(I - \rho W)y - X\beta\right]^T[(I - \rho W)y - X\beta]
\]

Fungsi log-likelihood pada \(H_0 \) adalah

\[
l_0(\sigma^2, \beta; y) = c(y) - \frac{n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} [y - X\beta]^T [y - X\beta]
\]

Statistik uji Likelihood Rasio (LRT) merupakan selisih dari kedua fungsi likelihood di atas, sehingga

\[
\text{LRT} = l(\sigma^2, \rho, \beta; y) - l_0(\sigma^2, \beta; y)
\]

\[
\text{LRT} = \left[-2\ln |I - \rho W| - \frac{1}{\sigma^2} [(I - \rho W)y - X\beta]^T [(I - \rho W)y - X\beta] - \frac{1}{\sigma^2} [y - X\beta]^T [y - X\beta]\right]
\]

Sedangkan untuk menduga parameter model spasial lag yaitu dengan metode pendugaan kemungkinan maksimum.

Jika \(\rho = 0 \), \(\lambda \neq 0 \) pada persamaan (2), maka persamaannya menjadi model regresi spasial error (*Spatial Error Model*) dengan persamaan sebagai berikut:

\[
\begin{align*}
 y &= X\beta + u \\
 u &= \lambda Wu + \epsilon \\
 \epsilon &\sim N(0, \sigma^2 I_n)
\end{align*}
\]

(4)

Untuk menguji signifikansi dari koefisien spasial lag \((p) \) digunakan *Likelihood Ratio Test (LRT)*

Matris ragam-korogam dari SEM adalah \(V = (I - B)^{-1}\Sigma(I - B)^{-T} \), \(B = \lambda W \)

Fungsi likelihood dari SEM adalah

\[
l(\lambda, \sigma^2, \beta, u) = c(u)V^{-\frac{1}{2}} \exp \left\{-\frac{1}{2} u^TV^{-1}u\right\}
\]

Fungsi Likelihood pada \(H_0 \) adalah

\[
l_0(\sigma^2, \beta; y, X) = c(y, X) - \frac{n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} [y - X\beta]^T[y - X\beta]
\]
Likelihood Ratio Test (LRT) adalah suatu uji yang berbasis pada selisih antara \(L \) dan \(L_0 \),

\[
LRT = -2[\ln L(\lambda, \sigma^2, \beta; y, X) - \ln L_0(\sigma^2, \beta; y, X)]
\]

Sehingga LRT yang diperoleh adalah

\[
LRT = -2 \left\{ \frac{n}{2} \ln \sigma^2 - \frac{1}{2} \ln \left| I - B^{-1}(I - B)^{-T} \right| + \frac{1}{2\sigma^2} (y - X\beta)^T (I - B)^{-1} (I - B)^{-T} (y - X\beta) + \frac{n}{2} \ln \sigma^2 + \frac{1}{2\sigma^2} (y - X\beta)^T (y - X\beta) \right\}
\]

Selanjutkan pendugaan parameter pada model ini menggunakan metode Generalized Least Square.

Untuk mengetahui adanya dependensi spasial digunakan uji Lagrange Multiplier (LM) (Anselin, 1988), sebagai berikut:

1. Untuk model umum Regresi Spatial
 \(H_0 : \rho, \lambda = 0 \) (model OLS)
 \(H_1 : \rho \neq 0 \) (model regresi spasial)

2. Untuk model regresi spasial lag
 \(H_0 : \rho = 0 \) (tidak ada dependensi spasial lag)
 \(H_1 : \rho \neq 0 \) (ada dependensi spasial lag)

3. Untuk model regresi spasial error
 \(H_0 : \lambda = 0 \) (tidak ada dependensi spasial dalam error)
 \(H_1 : \lambda \neq 0 \) (ada dependensi spasial dalam error)

Statistik LM yang digunakan berbentuk:

\[
LM = E^T (R_y^2 T_{22} - 2R_y R_c T_{12} + (D + T_{11})) \sim \chi^2(q)
\]

Dimana:

\[
R_y = e^T Wy / \sigma^2
\]

\[
R_c = e^T Wc / \sigma^2
\]

\[
M = I - X(X^T X)^{-1} X^T
\]

\[
T_{11} = \text{tr}(W_i W_j + W_i^T W_j)
\]

\[
D = \sigma^2 (WX\beta)^T M(WX\beta)
\]

\[
E = (D + T_{11}) T_{22} - (T_{12})^2
\]

\[
q = \text{jumlah parameter spasial}
\]

Jika matriks pembobot spasialnya sama (\(W_i = W_j = W \)) maka:

\[
T_{11} = T_{12} = T_{22} = T = \text{tr}((W^T + W)W)
\]

Kesimpulan akan Tolak \(H_0 \) jika nilai LM > \(\chi^2(q) \)

Matriks Pembobot Spasial

Matriks pembobot spasial pada dasarnya merupakan matriks contiguity yang distandardisasi. Matriks contiguity adalah matriks yang menggambarkan hubungan antara daerah. Pada matriks contiguity, nilai 1 menunjukkan daerah yang bertetangga satu sama lain. Untuk dapat melihat segerapa besar pengaruh masing-masing tetangga terhadap suatu daerah dapat dihitung dari rasio antara nilai pada daerah tertentu dengan total nilai daerah tetangganya. Hasilnya merupakan nilai pembobot (\(w_{ij} \)) untuk setiap kebertetangan dengan persamaan:

\[
w_{ij} = \frac{c_{ij}}{c_i}
\]

Nilai \(w_{ij} \) menggambarkan pengaruh alami yang diberikan wilayah ke-j untuk wilayah ke-i. Sehingga matriks pembobot spasial dapat dikatakan juga sebagai matriks yang menggambarkan kekuatan interaksi antar lokasi.
3. Studi Kasus: Penentuan Faktor-Faktor Kemiskinan

Penelitian ini dilakukan pada 38 kabupaten/kota di Propinsi Jawa Timur. Beberapa faktor yang diambil disini adalah:

- Pendidikan: angka buta huruf (x_1) yaitu persentase penduduk yang tidak dapat membaca pada usia 15-55 tahun (usia produktif). Angka < SD (x_2) yaitu persentase penduduk yang pendidikannya tidak tamat Sekolah Dasar (SD) atau tidak bersekolah.

- Fasilitas perumahan: Rumah tangga pengguna air bersih (x_3) adalah persentase rumah tangga yang menggunakan air minum yang berasal dari air mineral, air PAM, pompa air, sumur atau mata air terluar.

- Program Pemerintah: Askeskin (x_4) adalah persentase penduduk yang mendapatkan jaminan pemeliharaan kesehatan yang ditandai dengan memiliki kartu kepesertaan jaminan pemeliharaan kesehatan masyarakat miskin. Surat Miskin (x_5) adalah persentase penduduk yang mendapat surat miskin yang merupakan kelompok rumah tangga di bawah 20 persen kelompok pengeluaran terbawah. Raskin (x_6) adalah persentase penduduk yang diperbolehkan membeli beras dengan harga murah bersubsidi.

- Variabel respon (y) adalah headcount index kemiskinan yaitu persentase penduduk miskin.

Pemodelan penentuan faktor-faktor kemiskinan ini dilakukan dengan bantuan software Matlab V.7.7 dan menggunakan Matlab Econometric Toolbox (Le Sage 2005).

Pembentukan model regresi dengan metode OLS diawali dengan pemilihan variabel-variabel yang digunakan dalam model dengan menggunakan metode stepwise. Variabel-variabel yang signifikan dan layak digunakan ke dalam model. Hasil pengolahan diperoleh dari 6 variabel prediktor, yaitu x2, x3, x5 dan x6.

Hasil pengolahan diperoleh nilai uji koefisien determinasi (R^2) sebesar 0.9472 yang berarti model regresi OLS yang terbentuk mampu menjelaskan variasi dari persentase kemiskinan sebesar 94.72 persen, sedangkan sisanya (5.28 persen) dijelaskan oleh variabel lain di luar model OLS. Model OLS yang terbentuk menghasilkan nilai F = 278.6 dengan p-value = 0.000 (tolak H0), hal ini menunjukkan variabel-variabel prediktor secara simultan berpengaruh terhadap variabel respon.

Model regresi OLS adalah $\hat{y} = 3.03 + 0.78x_2 + 0.32x_3 + 0.28x_5 + 0.38x_6$. Apabila tidak ada penduduk yang tidak tamat SD, dan tidak menggunakan air minum yang berasal dari air mineral, air PAM, pompa air, sumur atau mata air terluar, serta tidak ada penduduk yang menerima surat keterangan miskin dan raskin, maka persentase penduduk miskin sekitar 3.03 persen. Persentase penduduk yang tidak tamat SD atau tidak bersekolah (x_2) berkorelasi positif dengan persentase kemiskinan (y) dan jika faktor yang lain tetap, maka setiap kenaikan 1 satuan x_2 maka akan meningkatkan persentase kemiskinan sebesar 0.78 persen. Persentase penduduk yang menggunakan air minum yang berasal dari air mineral, air PAM, pompa air, sumur atau mata air terluar (x_3) juga berkorelasi positif dengan persentase kemiskinan (y) dan jika faktor yang lain tetap, maka setiap kenaikan 1 satuan x_3 maka akan meningkatkan persentase kemiskinan sebesar 0.32 persen. Persentase penduduk yang mendapat surat miskin yang merupakan kelompok rumah tangga di bawah 20 persen kelompok pengeluaran terbawah juga berkorelasi positif dengan persentase kemiskinan (y) dan jika faktor yang lain tetap, maka setiap kenaikan 1 satuan x_5 maka akan meningkatkan persentase kemiskinan sebesar 0.28 persen. Persentase penduduk yang
diperbolehkan membeli beras dengan harga murah bersubsidi juga berkorelasi positif dengan persentase kemiskinan (y). Jika faktor yang lain tetap, maka setiap kenaikan 1 satuan x_i maka akan meningkatkan persentase kemiskinan sebesar 0.38 persen.

<table>
<thead>
<tr>
<th>Tabel 1. Hasil Output pada Keempat Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Intercept</td>
</tr>
<tr>
<td>x_2</td>
</tr>
<tr>
<td>x_3</td>
</tr>
<tr>
<td>x_4</td>
</tr>
<tr>
<td>x_5</td>
</tr>
<tr>
<td>R^2</td>
</tr>
<tr>
<td>Log-Likelihood</td>
</tr>
<tr>
<td>ρ</td>
</tr>
<tr>
<td>Lambda</td>
</tr>
<tr>
<td>AIC</td>
</tr>
</tbody>
</table>

*) signifikan

Bentuk umum model umum spasial/General Spatial Model:

$$y_i = 0.07 + 0.608 \sum_{i=1}^{n} W_{ij} + 0.03x_2 + 0.04x_3 + 0.09x_4 + 0.04x_5 + u_i$$

$$u_i = 0.698 \sum_{i=1}^{n} W_{ij} + \varepsilon_i$$

y_i adalah persentase kemiskinan kabupaten/kota ke-i, x_2 adalah persentase penduduk yang tidak tamat SD atau tidak bersekolah kabupaten/kota ke-i, x_3 adalah persentase penduduk yang menggunakan air minum yang berasal dari air mineral, air PAM, pumpa air, sumur atau mata air terlindung kabupaten/kota ke-i, x_4 adalah persentase penduduk yang mendapat surat miskin yang merupakan kelompok rumah tangga di bawah 20 persen kelompok pengeluaran terbawah kabupaten/kota ke-i, x_5 adalah persentase penduduk yang diperbolehkan membeli beras dengan
harga murah bersubsidi kabupaten/kota ke-i. W adalah matriks penimbang spasial, \(u_i \) adalah error spasial kabupaten/kota ke-i dan \(e_i \) adalah residual dari kabupaten/kota ke-i.

Intersep 0.07 artinya apabila adalah persentase penduduk yang tidak tamat SD atau tidak bersekolah, persentase penduduk yang menggunakan air minum yang berasal dari air mineral, air PAM, pompa air, sumur atau mata air terlindung. persentase penduduk yang mendapat surat miskin yang merupakan kelompok rumah tangga di bawah 20 persen kelompok pengeluaran terbawah, dan persentase penduduk yang diperbolehkan membeli beras dengan harga murah bersubsidi bernilai nol, maka persentase kemiskinan berkisar 7 persen. Penduga koefisien spasial lag dari model di atas sebesar 0.608.

Jika faktor lain diasumsikan konstan, dan apabila persentase penduduk yang tidak tamat SD atau tidak bersekolah di suatu kabupaten/kota mengalami kenaikan 1 satuan, maka persentase kemiskinan akan meningkat 3 persen. Jika faktor lain diasumsikan konstan, dan apabila persentase penduduk yang menggunakan air minum yang berasal dari air mineral, air PAM, pompa air, sumur atau mata air terlindung di suatu kabupaten/kota mengalami kenaikan 1 satuan, maka persentase kemiskinan akan meningkat 4 persen. Jika faktor lain diasumsikan konstan, dan apabila persentase penduduk yang mendapat surat miskin yang merupakan kelompok rumah tangga di bawah 20 persen kelompok pengeluaran terbawah di suatu kabupaten/kota mengalami kenaikan 1 satuan, maka persentase kemiskinan akan meningkat 9 persen. Jika faktor lain diasumsikan konstan, dan apabila persentase penduduk yang diperbolehkan membeli beras dengan harga murah bersubsidi di suatu kabupaten/kota mengalami kenaikan 1 satuan, maka persentase kemiskinan akan meningkat 4 persen. Error spasial saling berkorrelasi antar daerah, sehingga hubungan ini dapat dijelaskan polanya pada persamaan \(u_i = 0.698 \sum_{j=1}^{n} W_{ij} + e_i \).

Koefisien determinasi \((R^2) \) adalah 0.9659 yang berarti 96.59% variansi dari variabel respon (persentase kemiskinan) bisa dijelaskan oleh model ini dengan nilai AIC sebesar 106.1502.

Bentuk umum model spasial lag/Spatial Autoregressive Model (SAR):

\[
y_t = 2.31 + 0.19 \sum_{i=1}^{n} W_{yi} + 0.72x_{2t} + 0.29x_{3t} + 0.37x_{5t} + 0.39x_{6t} + e_i
\]

Intersep 2.31 artinya apabila adalah persentase penduduk yang tidak tamat SD atau tidak bersekolah, persentase penduduk yang menggunakan air minum yang berasal dari air mineral, air PAM, pompa air, sumur atau mata air terlindung, persentase penduduk yang mendapat surat miskin yang merupakan kelompok rumah tangga di bawah 20 persen kelompok pengeluaran terbawah, dan persentase penduduk yang diperbolehkan membeli beras dengan harga murah bersubsidi bernilai nol, maka persentase kemiskinan berkisar 2.3 persen. Penduga koefisien spasial lag dari model di atas sebesar 0.19.

Jika faktor lain diasumsikan konstan, dan apabila persentase penduduk yang tidak tamat SD atau tidak bersekolah di suatu kabupaten/kota mengalami kenaikan 1 satuan, maka persentase kemiskinan akan meningkat 72 persen. Jika faktor lain diasumsikan konstan, dan apabila persentase penduduk yang menggunakan air minum yang berasal dari air mineral, air PAM, pompa air, sumur atau mata air terlindung di suatu kabupaten/kota mengalami kenaikan 1 satuan, maka persentase kemiskinan akan meningkat 29 persen. Jika faktor lain diasumsikan konstan, dan apabila persentase penduduk yang mendapat surat miskin yang merupakan kelompok rumah tangga di bawah 20 persen kelompok pengeluaran terbawah di suatu kabupaten/kota mengalami kenaikan 1 satuan,
maka persentase kemiskinan akan meningkat 27 persen. Jika faktor lain diasumsikan konstan, dan apabila persentase penduduk yang diperbolehkan membeli beras dengan harga murah bersubsidi di suatu kabupaten/kota mengalami kenaikan 1 satuan, maka persentase kemiskinan akan meningkat 39 persen.

Koefisien determinasi (R^2) adalah 0.9677 yang berarti 96.77% variansi dari variabel respon (persentase kemiskinan) bisa dijelaskan oleh model ini dengan nilai AIC sebesar 103.323.

Bentuk umum model spasial error/Spatial Error Model (SEM):

$$y_i = 2.77 + 0.77 x_{2i} + 0.36 x_{3i} + 0.26 x_{5i} + 0.37 x_{6i} + u_i$$

y_i adalah persentase kemiskinan kabupaten/kota ke-i, x_2 adalah persentase penduduk yang tidak tamat SD atau tidak bersekolah kabupaten/kota ke-i, x_3 adalah persentase penduduk yang menggunakan air minum yang berasal dari air mineral, air PAM, pompa air, sumur atau mata air terlindung kabupaten/kota ke-i, x_5 adalah persentase penduduk yang mendapat surat miskin yang merupakan kelompok rumah tangga di bawah 20 persen kelompok pengeluaran terbawah kabupaten/kota ke-i, x_6 adalah persentase penduduk yang diperbolehkan membeli beras dengan harga murah bersubsidi kabupaten/kota ke-i, W adalah matriks penimbang spasial, u adalah error spasial kabupaten/kota ke-i dan e_i adalah residual dari kabupaten/kota ke-i.

Interscp 2.77 artinya apabila adalah persentase penduduk yang tidak tamat SD atau tidak bersekolah, persentase penduduk yang menggunakan air minum yang berasal dari air mineral, air PAM, pompa air, sumur atau mata air terlindung, persentase penduduk yang mendapat surat miskin yang merupakan kelompok rumah tangga di bawah 20 persen kelompok pengeluaran terbawah, dan persentase penduduk yang diperbolehkan membeli beras dengan harga murah bersubsidi bernilai nol, maka persentase kemiskinan berkisar 2.7 persen. Jika faktor lain diasumsikan konstan, dan apabila persentase penduduk yang tidak tamat SD atau tidak bersekolah di suatu kabupaten/kota mengalami kenaikan 1 satuan, maka persentase kemiskinan akan meningkat 77 persen. Jika faktor lain diasumsikan konstan, dan apabila persentase penduduk yang menggunakan air minum yang berasal dari air mineral, air PAM, pompa air, sumur atau mata air terlindung di suatu kabupaten/kota mengalami kenaikan 1 satuan, maka persentase kemiskinan akan meningkat 36 persen. Jika faktor lain diasumsikan konstan, dan apabila persentase penduduk yang mendapat surat miskin yang merupakan kelompok rumah tangga di bawah 20 persen kelompok pengeluaran terbawah di suatu kabupaten/kota mengalami kenaikan 1 satuan, maka persentase kemiskinan akan meningkat 26 persen. Jika faktor lain diasumsikan konstan, dan apabila persentase penduduk yang diperbolehkan membeli beras dengan harga murah bersubsidi di suatu kabupaten/kota mengalami kenaikan 1 satuan, maka persentase kemiskinan akan meningkat 37 persen. Error spasial saling berkorelasi antar daerah, sehingga hubungan ini dapat dijelaskan polanya pada persamaan $u_i = 0.98 \sum_{i=1}^{n} W u_i + e_i$.

Koefisien determinasi (R^2) adalah 0.9473 yang berarti 94.73% variansi dari variabel respon (persentase kemiskinan) bisa dijelaskan oleh model ini dengan nilai AIC sebesar 120.5126.

Dilihat dari nilai koefisien determinasi yang diperoleh dari hasil pengolahan memunjukkan model spasial lebih baik untuk menjelaskan keragaman (variansi) dari variabel respon (y) yang dapat dijelaskan oleh model jika dibandingkan dengan menggunakan model regresi OLS.
Model regresi spasial yang lebih baik untuk menduga faktor-faktor kemiskinan di Jawa Timur adalah model spasial lag (SAR) dibanding dua model regresi spasial lainnya. Hal ini berdasarkan nilai R^2 atau koefisien determinasi yang paling tinggi dan nilai AIC yang paling rendah diantara ketiga model regresi spasial yang terbentuk.

4. Kesimpulan

Kesimpulan dari penelitian ini, model yang layak untuk menentukan faktor-faktor kemiskinan di Jawa Timur dengan kriteria pemilihan model melalui nilai R^2 yang lebih tinggi dan nilai AIC yang paling rendah adalah model regresi spasial lag atau Spatial Autoregressive Model (SAR) dan faktor-faktor yang mempengaruhi kemiskinan adalah persentase penduduk yang pendidikannya tidak tamat Sekolah Dasar (SD) atau tidak bersekolah, persentase rumah tangga yang menggunakan air minum yang berasal dari air mineral, air PAM, pompa air, sumur atau mata air terlindung, persentase penduduk yang memperoleh jaminan pemeliharaan kesehatan yang ditandai dengan memiliki kartu kepesertaan jaminan pemeliharaan kesehatan masyarakat miskin dan persentase penduduk yang mendapat surat miskin yang merupakan kelompok rumah tangga di bawah 20 persen kelompok pengeluaran terbawah mempengaruhi persentase penduduk miskin.

Daftar Pustaka

Alamat Redaksi:
Jurusan Matematika, FTIS - UNPAR
Gedung 9, Lantai 1
Jl. Ciumbuleuit No. 94, Bandung - 40141